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Abstract

This paper proposes a new distributed model predictive control (DMPC) for positive Markov jump
systems subject to uncertainties and constraints. The uncertainties refer to interval and polytopic types,
and the constraints are described in the form of 1-norm inequalities. A linear DMPC framework contain-
ing a linear performance index, linear robust stability conditions, a stochastic linear co-positive Lyapunov
function, a cone invariant set, and a linear programming based DMPC algorithm is introduced. A global
positive Markov jump system is decomposed into several subsystems. These subsystems can exchange
information with each other and each subsystem has its own controller. Using a matrix decomposition
technique, the DMPC controller gain matrix is divided into nonnegative and non-positive components
and thus the corresponding stochastic stability conditions are transformed into linear programming. By
virtue of a stochastic linear co-positive Lyapunov function, the positivity and stochastic stability of the
systems are achieved under the DMPC controller. A lower computation burden DMPC algorithm is
presented for solving the min-max optimization problem of performance index. The proposed DMPC
design approach is extended for general systems. Finally, an example is given to verify the effectiveness
of the DMPC design.
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Positive systems have drawn an increasing interest due to their interesting properties in the-
ory and importance in practical applications [1-5]. This class of systems can model dynamic
processes containing nonnegative quantities such as communication and traffic congestion [6],
water systems [7], medical treatment [8], etc. Positive Markov jump systems (PMJSs) consist
of positive subsystems and a Markov process. As a special class of positive systems, PMJSs
are paid attention since they have powerful ability to model abrupt changes from operation
environment, components, subsystems interconnections, and so on. Different from Markov
jump systems (MJSs) without the positivity [9-13], PMJSs motivate new research approaches
owing to the positivity requirement. In [14], it was shown that the mean square stability of
PMISs is equivalent to 1-moment stability and linear programming can be used to check the
stability conditions. Some linear programming based necessary and sufficient conditions were
derived for stochastic stability and ¢ performance filter of PMJSs in [15]. In [16], a stochas-
tic linear co-positive Lyapunov function was constructed and control synthesis of PMJSs was
explored in terms of linear programming. Some mean square stability conditions were also
presented in [17] for PMJSs with homogeneous transition probability by analyzing the time
evolution of the first-order moment of the state. As we all know, the states of positive sys-
tems are kept in the nonnegative orthant. Based on the property, traditional Lyapunov stability
theory with quadratic Lyapunov functions is replaced by the one with linear Lyapunov func-
tions [18]. Accordingly, linear programming was used to check the corresponding conditions
[19-21]. These properties of positive systems also bring some new research issues such as
optimal control of PMJSs. Generally, the optimal control law of general systems was obtained
by solving some Riccati equations [22] and Hamilton-Jacobi-Bellman equations [23]. How-
ever, these optimization approaches may not be valid for positive systems since the obtained
optimal control cannot guarantee the positivity of positive systems. In addition, co-positive
Lyapunov functions integrated with linear programming are more effective than quadratic
Lyapunov functions integrated with linear matrix inequalities. Up to now, the optimal control
of PMJSs is still an open issue.

Model predictive control (MPC) is extensively used to handle the constraints of systems
[24-28]. MPC is a step-by-step optimization technique, in which an optimal control input
is obtained at each time instant by solving an optimization problem. To deal with the op-
timal control of positive systems, a linear centralized MPC framework was established in
[29-31]. As described in above positive systems literature, linear Lyapunov functions and
linear programming are used in the linear MPC framework. It is also necessary to point out
that the centralized MPC may be impractical and unsuitable for large-scale systems. PMJSs
contain two classes of states: one is the continuous-time state x(k) and the other one is the
jump mode ry. The MPC of PMIJSs considers not only the performance of each mode but
also the interconnection of subsystems. Practical positive systems such as communication
networks [6], water systems [7], and medical treatment systems [8] are typical large-scale
systems. These imply that the MPC may not be effective for PMJSs though there have been
some MPC results on MJSs [32-35]. To overcome the drawbacks of MPC, distributed MPC
(DMPC) is proposed and has received many concerns [36-38]. Under the DMPC framework,
the plant mode is divided into several subsystems and then the controller of each subsystem
is designed to reach a global performance. The collapse of the controller of some subsystem
may not affect the stability of the systems since the controllers of other subsystems are still
normal. DMPC reduces the computation burden of the MPC scheme of complex systems
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and increases the safety of systems. DMPC of stochastic systems has also been paid some
attention. A DMPC method for the case that the states are not measurable was given in
[39] by converting the probabilistic constraints into deterministic constraints. For the systems
with parameter uncertainties, a stochastic DMPC algorithm based on generalized polynomial
chaos expansions was developed in [40]. A DMPC design approach with Jacobi iterative algo-
rithm was introduced for MJSs in [41]. Considering the systems with randomly occurring and
Markov packet dropouts [42,43], an output feedback DMPC and a DMPC saturation control
were proposed in terms of linear matrix inequalities, respectively.

By the above observation, it is clear that DMPC is powerful for dealing with the optimal
control of complex systems and some significant achievements have been addressed in terms
of linear matrix inequalities. Thus, two questions naturally arise: (i) whether the DMPC is
available to PMJSs and (ii) how to establish a DMPC framework of PMIJSs if the answer of
(1) is positive. To the best of the authors’ knowledge, there exist three challenges to solve
the DMPC of PMJSs. First, the traditional DMPC may be unavailable. It has been shown in
aforementioned literature that a linear approach is more tractable for positive systems. Most
DMPC frameworks in literature are described in a quadratic form. Second, existing control
approaches of PMJSs cannot be developed for the DMPC of PMIJSs. How to guarantee the
positivity of a system is one of difficult issues of positive systems. Under the DMPC frame-
work, the underlying systems contain the input term of some subsystem and the input terms
of other subsystems correlated to the subsystem. In this case, the positivity of the systems is
more complex than general control synthesis of positive systems. Third, the DMPC algorithm
involving linear matrix inequalities is less efficient for the DMPC of PMJSs. Computation
burden has always been one obstacle of MPC applications in practice. Owing to the com-
plexity of optimization algorithms involving linear matrix inequalities, it will lead to heavy
computation burden and reduce the efficiency of MPC applications. The computation burden
is still kept high though DMPC is introduced. These issues motivate us carry out the work.

This paper investigates the DMPC of PMJSs with interval and polytopic uncertainties,
respectively. First, a linear performance index is introduced. Then, interval and polytopic un-
certainties and linear constraints in the form of a I-norm inequality are presented. Using a
linear stochastic co-positive Lyapunov function, the DMPC controller of PMIJSs is designed
in terms of linear programming. A cone is constructed to guarantee the invariant property
of the systems. Finally, a DMPC algorithm based on linear programming is provided. The
contribution of the paper has three aspects: (i) a new DMPC framework is established for
PMIJSs, (ii) a linear programming based DMPC algorithm is presented, and (iii) the presented
DMPC framework can be applied for MJSs and other issues of positive systems. The remain-
der of the paper is organized as follows. Section 2 describes the problem formation and gives
some preliminaries of positive systems. Section 3 consists of four sections: The performance
index, uncertainties, constraints, and a stochastic stability condition are presented in the first
section; In the second section, the DMPC controller of PMIJSs is designed; The third section
handles the constraints; The last section explores the stochastic robust stability of PMJSs. In
Section 4, the presented approach in Section 3 is developed for general systems. An example
is provided in Section 5. Section 6 concludes the paper.

Notation: Let 3, %", R, and R"*" be the sets of real numbers, n-dimensional vectors,
n-dimensional nonnegative vectors, and n x n matrices, respectively. Denote by N and N the
sets of nonnegative and positive integers, respectively. For a vector x = (x1, o x)T, =0
(>0) and x=<0 (<0) mean that x;>0 (x;>0) and x; <0 (x; <0), Vi =1, ..., n, respectively.
For a matrix A = [a;;] € W"™", the inequalities A>0 (>0) and A<0 (<0) mean that a;>0



J. Zhang, X. Deng and L. Zhang et al./Journal of the Franklin Institute 357 (2020) 9568-9598 9571

(a;j>0) and a; <0 (a;; <0), Vi, j =1, ..., n, respectively. The matrix / is the identical matrix

with proper dimensions. The symbol Co refers to the convex hull. Let ¢, = (1, ..., 1)T € %"

and ) = (0,...,0,1,0,...,0)7. The symbol ||lx||; = >, |x;| denotes the 1-norm of vector
i—1 n—i

x = (x1,...,%,)7. E{x} stands for the expectation of stochastic variable x. Throughout the

paper, the dimensions of vectors and matrices are assumed to be compatible if not stated.

2. Preliminaries

Consider a class of discrete-time time-varying stochastic systems:
x(k+1) = A(ri)x(k) + B(ri)u(k), ()

where x(k) e X" and u(k) e R are the system state and the control input, respectively. The
system matrices are unknown with A(ry) e R"*" and B(ry) e R" ™. Let r; be the mode and
{re, k € N} be a jumping process taking values in a finite set $ = {1,2,...,S}, S € Nt with
the transition rates: P(ry4i = q|rx = p) = m,y, where m,,>0 and ijl g =1,p,qg€3.
For convenience, denote by A; and B; the system matrices for ry = i.

In the following section, we introduce some preliminaries on positive systems and stochastic
systems.

Definition 1 [1,2]. A system is positive if its state is nonnegative for any nonnegative initial
state and any nonnegative control input.

Lemma 1 [1,2]. A discrete-time system x(k + 1) = Ax(k) + Bu(k) is positive if and only if
A>0 and B>0.

Lemma 2. The system (1) is positive if A;>0 and B;>0, Vi € 3.
Lemma 2 is a direct extension of Lemma 1. Lemma 2 implies that a Markov jump system
is positive if all its subsystems are positive.

Lemma 3 [1,2]. For a matrix A>0, the following two conditions are equivalent:

(i) A is a Schur matrix;
(ii) There exists a vector v >= 0 such that (A —I)Tv < 0.

Give a positive system x(k + 1) = Ax(k). By Lemma 1, A>0. Choose a linear function
V(x(k)) = x(k)Tv, where v is defined in Lemma 3. It is clear that V(x(k)) is positive definite
since x(k)>0 and v > 0. Denote the difference of V(x(k)) by AV (x(k))=Vxk+1)) —
V(x(k)). By the term (ii) in Lemma 3, it is clear that AV(x(k)) <0, Vx(k)#0. Then, V(x(k))
is a Lyapunov function of the considered positive system. Such a linear function is called
linear co-positive Lyapunov function and will be used later to reach the stability of the systems
considered in the paper.

Definition 2 [3]. The positive system (1) with u(k) = 0 is mean-square stable if for given
initial state x(ko) and initial mode ry, E{||x(k)|; : x(ko), ro} — 0 as k— oo.

3. DMPC of PMJSs

This section is divided into four sections. In the first section, the global system is decom-
posed into several subsystems. A linear performance index is constructed and uncertainties
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and constraints are introduced. The second section proposes the DMPC controller design. In
the third section, the constraints are handled. The last section addresses the stochastic stability
of PMJSs.

3.1. Linear DMPC framework

Two classes of uncertainties are considered for system (1). The first class is interval un-
certainty:

Qi () := {[A(%) BUoIA(r) < A(re) < A(re), B(r) < B(r) < B(r)}, 2

where A(r) e X%, B(ry) e "> and A(ry) € W>", B(ry) € W™ are the lower and upper
bound matrices, respectively, and satisfy that A(7;)>0, B(7x)>0. The second one is polytopic
uncertainty:

Q(r) = Co{[AV (i) BV (ro)], ..., [AV () B (r)]}, 3)

where A© (1) e W, BO(r) e W™ £ =1,2,...,L are the vertex matrices and satisfy
that A (r;)>=0, BO(r;)>0.
The model (1) can be decomposed into N subsystems:

xak+1) x11 (k) uy (k)
Xﬁ(k.-f‘ D | =Ai(rk) Xﬁ.(k) + (B (r(k)),...,Bi(r(k)),...,By(rk))) ”i(.k)

svw(k+ 1) v (k) u (k)
@)

where x;;(k) € 0" and u;(k) € R™. Then, the distributed systems with PMJSs can be given
as:

N
5k + 1) = A Ds ) + B tNu®) + 3 Bk, )
J=1,j#

where x;(k)eR"” and u;(k) € W™ are the state and control input of the ith subsys-
tem, respectively, and m = 25\]:1 m;. It should be pointed out that the state x;(k) =
(X11, .- +» Xiiy .. ., xyn) T contains all states of the system (4), A;(r(k)) = A(r(k)), and B;(r(k))
is the ith column of B(r(k)). By (2) and (3), the uncertainties of the system matrices in (5) are
rewritten as:

Q1 () = {[Ai(re) Bi(ro)l|A;(re) < Ai(ri) < Ai(ri), Bi(r) < Bi(ri) < Bi(r)}, (6)
and
Q (1) = Cof[A" () BV (ro)1, ..., AP () B (o)1) (7)

In the MPC and DMPC literature [32-34,41-43], polytopic uncertain has been extensively
employed to describe the uncertainty of systems owing to its powerful in modeling time-
varying and nonlinear processes. In this paper, we first follow the polytopic uncertainty used
in literature. On the other hand, we also introduce interval uncertainty to PMJSs. Interval
uncertainty can model a large class of uncertain systems by giving the lower and upper
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bounds of system matrices. Give a system x(k + 1) = Ax(k), where A <A < A. Suppose
that A>0 and A is a Shur matrix. First, we have A>A>0, which implies that the considered
system is positive. By Lemma 3, there exists a vector v > 0 such that A- DTy < 0. Thus,
(A=D"v < (A=1DTv < 0. This reveals that the considered system is stable. In summary,
the positivity and stability of an interval positive system can be reached by guaranteeing
the positivity of the lower bound of the system and the stability of the upper bound of the
system, respectively. This is a good property of interval positive systems whereas it is not for
general interval systems (non-positive). Some statements about interval uncertainty can refer
to [30]. The challenge to tackle the interval uncertainty lies in how to design a controller
for guaranteeing either the positivity of the lower bound of interval uncertain systems or the
stability of the upper bound of interval uncertain systems.

For general systems, the constraint conditions are usually presented based on the Euclidean
norm [25,26]. Note the fact that the states of positive systems are nonnegative. Thus, the
following constraint conditions are introduced for the system (5):

llx; (k) [ =< 9, (8a)

u; ()1 <, (8b)

where § >0 and >0 are given constants. Some similar constraint conditions have also been
used in [29] and [30].
The objective of this paper is to design a set of DMPC controllers:

N
ui(k + slk) = F;(k, riqg)xi (k + s|k) + Z Fj(k, riqgi)xjj(k + slk),
J=l
= Fi(k, regsp)xitk +slk), i=1,2,...,N, s=1,2,...,00 )

such that the system (5) is positive and stochastic stability by solving the optimization:

min max Ji(k) subject to (5) and (8),
ui(k+slk)  [Ai(ry) Bi(ri)]€$21(01,2,)
i=1,2,.,N,s>0  i=1,2,...N.r €S

(10)

with the performance index function:

Jitk) = Ek{ 37 (6 ksl (K + s1k) + ul (k + slk)ei(k + slk)
s=0

N
+ 20wk slhos(k + slh) | (1
J=Lji

where x;(k + s|k) and u;(k + s|k) are the state and input predicted at time instant k, ¢(k +
slk) > 0, gi(k +slk) <0, g;(k+slk) <0, and u;f(~) is the solution obtained from a previous
iteration and kept fixed in the current iteration. As stated in [30], there does not exist any
nonnegative control law such that a discrete-time positive system is stable. Based on this point,
we assume that the DMPC control law to be designed is negative, that is, uIT (k + slk) <
0. Consequently, the corresponding parameters ¢ (k + s|k), 0;(k + s|k), and @;(k + slk) are
introduced to guarantee the validity of the performance index function.



9574 J. Zhang, X. Deng and L. Zhang et al./Journal of the Franklin Institute 357 (2020) 9568-9598

3.2. DMPC design

First, a stochastic linear co-positive Lyapunov function is constructed for the system (5).
Then, a stochastic stability condition is derived. Finally, a DMPC controller design is proposed
for the system (5).

By Eqgs. (5) and (9), the closed-loop system is:

N
xi(k + 54+ 116 = (4i(p) + Bip)Fik, p) )ik +slk) + Y Bi(pIF} (&, pk + 1)
J=1j#i
= (A7) + BiEk, p) )itk + 51k, (12)

where riy = p, AT (p) = Ai(p) + ZyzL#i Bj(p)Fj*(k, p) and the second equation follows
from x;(k + s|k) = x;(k + s|k). Construct a stochastic linear co-positive Lyapunov function:

Vilk + slk) = x| (k + slk)vi(k, p), (13)
where v;(k, p) > 0, v;(k, p) € 9%". To obtain the bound of the performance index in Eq. (10),

a robust stability condition is introduced:

Vitk + s + 11k) — Vi(k + slk) < —(x,.T (k + slk)g (k + slk) + u! (k + s|k)oi (k + sk)

N
+ Yy ujfT(k+s|k)g,(k+s|k)). (14)
J=1j#i

Theorem 1. (Controller design) (a) Interval uncerﬁainty). If there exist constants h>1,
yi(k) >0 and N" vectors v;(k, p) > 0, éi(’)(k, p) <0,&;(k, p) <0 such that

S

AT ()Y pgith, @) + Ei(k, p) = vitk, p) + ¥ (p) <0, (15a)
g=1

S N m;
Ape | Bl ()Y mpvitk ) +0i(p) |+ D Bi(p) Y elE (K, p)

g=1 Jj=1,j#i =1
m;
+Bi(p) Y W& (k, p) = 0, (15b)
=1
S N
eh | B (0) D 7pqvitk, @) + 0i(p) | < hefy | BY () Y vtk @) + 0, (p) | (15¢)
g=1 q=1
S
B[ (p) Y mpvith, @) + 0i(p) = 0, (15d)
g=1

Et(l)(kvp)fgl(kﬂ p)a l=1’2""’mi’ (156)
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and
xj (klkyvi(k, p) < yi(k) (16)
hold Vp € $,V(, j) € {1,...,N} x{1,...,N},i # j, then under the control law

o e k. p)
el (BT (p) X_y pgvi(k, @) + 0i(p))

the interval uncertain system (5) is positive and satisfies the condition (14), where KT (p) =

Ai(p) + X011 1 B;(P)FF (k. p).

(b) Polytopic uncertainty. If there exist constants h> 1, y;(k) >0 and vectors v;(k, p) > 0
with vi(k, p) € R", pi(p)>0 with p;(p) € R™, gl.(')(k, p) € W, E,(k, p) < 0 with &,(k, p) € R"
such that

ui(k + slk) = Fi(k, p)xi(k + s|k) = xi(k+slk), (A7)

S
AT ()Y wpgvith, @) +Ei(k, p) = vik, p) + " (p) < 0, (182)
q=1
N mj mi
AV rep o) +1 Y BP0 Y eE (0 + B (p) Y e& " (o) = 0, (18b)
j=1,j#i =1 =1
N
BT (p) Y mpgvitk. @) + 0i > pi(p), (18¢)
g=1
T T
el?lipi(p) = hemjpj(p)’ (ISd)
50k, p) 2 Eik,p), 1=1,2,....my, (18¢)

and (16) hold VI € {1,...,L},Ype 3,V(,j)e{l,...,N} x{1,...,N},i # j, then under
the control law
YL (k. p)

ui(k + slk) = Fi(k, p)x(k + slk) = el pi(p)

x(k + slk), (19)

the polytopic system (5) is positive and satisfies the condition (14), where Afl) *(p) = Al-(l)(p) +
N
> BV (p)F} (k. p).

J=Lj#i

Proof. Along the system (12), the difference of the Lyapunov function in Eq. (13) is

Errsk (AVi(k + 51k)) = Expgpe(Vi(k + s + 1[k) — Vi(k + s]k))
= Eergu (] (k + s+ 1k)wvilk, rersriw)) — x7 (k + slk)vi(k, p)

= x] (k4 516) (47 (P) +Bip)Fi(k, )" B i, rceri)) = vick p)).
0)

Combining Egs. (9), (14), and (20) gives

x! k4 sl (A7 (9) + Bip)Fi(k, )" B 01k, i) = vick, p)
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N
+s) +F Kk peip)+ Y. FT(k po;(p))
j=lj#i
<0. 21

By the expectation property of the Markov process, it follows that Ey i (vi(k, rersr1x)) =
Zj:l 7pqvi(k, ). Then, the inequality (21) is equivalent to

S
x; (k+SIk)<(A§‘(p)+Bi (PFEK )Y mpvitk, @) —vitk, p) + s*(p) + ! (k, p)&-(ﬁ)) <0,
g=1
(22)

where ¢*(p) = ¢ (p) + X1y i Fi7 (k. p)o;j (p).
(a) Interval uncertainty. First, the positivity of the interval uncertain system (5) is dis-
cussed. By (15d), it follows that e} (B! (p) 22:1 7pqvitk, @) + 0i(p)) > 0. By (15b),

N mi (1) (T
— 1= em-%-' (k1 p)
AP+ Y Bi(p)—3 Z‘; -
j=1,j#i e, (B; (p) Zq:l Tpvik, q) + 0i(p))
mi 1) g T k
Zl:l emiSz ( ’ P) -0

+Bi(p) >
el (BT (p) Yi_y 7pgvi(k, @) + 0i(p))

h 1
> .
eh, BI (p) Xy v k) +0i(p) el (B (p) Yoy mpgvi (k) +; (P))

Together with S;’) (k, p) <0, (6), and (17) gives

It is easy to obtain from (15¢) that

N mi (1) WT
_ S eWe W (k. p)
0<AMP+h Y Bi(p)———g

j=1,j#i emi(g' (p) Zq:l ﬂqu[(k, ‘1) + Qt(p))

p er(vi?gi(lﬂ (k, p)
el (Bl (p) Yoy Tpgvi(k. @) + 01 (P))

AR Y ee T (k, p)
AP+ Y B
j=1,j#i Em; (B (p) Zq:l 7Tpevi(k, q) +0;(p))

> eféffi(l” (k, p)
el (BY (p) Yi_y pgvi(k. @) + 0i(p))

N

=A(p)+ Y Bi(p)Fj(k, p) + Bi(p)F:(k, p)
j=1.j#i
N
<Ai(p)+ Y. Bi(p)F;(k, p) + Bi(p)Fi(k, p),
j=1j#i

+ Bi(p)

+ Bi(p)

which implies that the pth mode of the interval uncertain system (5) is positive by Lemma 1.
Thus, the interval uncertain system (5) is positive by Lemma 2.
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Next, consider the validity of the condition (14). By (15¢) and (17), the following inequal-
ities hold:

N
F' (k, p)B] (p) Y _ mpqvik, @) + F' (k, p)oi(p)
q=1

S &k pey)”
el (B (p) Xy mpgvik, ) + 0i(p))
S €k, prel)”
el (Bl (p) Y- 7pgvi(k, @) + 0i(P))
&k, prey, (B (p) gy wpgviks @) + 0i(p))
e BT () X magvitk, ) + 0i(p))
=< &(k, p). (23)
From Egs. (6) and (23),

S
B (p) Y _ mpgvitk, q) + 0:(p))

g=1

S
B (p) Y 7pqvik, @) + 0i(p))

g=1

IA

N
(AF(P) + Bi(pIF:k, p)| > mpgvith, @) — vi(k, p) + 6*(p) + F (k. p)oi(p)
q=1

N
<A (p) Y mpgvik, @) + &k, p) — vilk, p) + 5" (p). (24)
g=1

Combining the fact xiT (k + s|lk) = 0, (15a), and (24) concludes that the condition (22) holds,
that is, the condition (14) is satisfied. Noting the facts e}, (B] (p) Zf/:l Tpevi(k, @) + 0i(p)) >
0 and Y™ eWeT (k, p) < 0, it follows that F;(k, p)<0. Thus, u;(k + s|k) < O.

=1 "m;
Finally, the upper bound of the performance index in (10) is obtained. Taking the expec-
tation for both sides of the condition (14) and summing it up from s = 0 to co give
o0

Ex(Vi(oolk)) = Ex (Vi) = ~Ex (3 (o (k + s1h) s (k + s1K) + ! (k + slk)ei (k + s1k)
s=0

N

+ 2wk slgk+slh))).
J=Lj#

From (14), it is easy to have E;(Vi(colk)) = 0. Thus, J;(k) < E;(Vi(k)) = x! (k|k)vi(k, p).

Let y(k) be the upper bound of J;(k) satisfying y;(k) > x] (k|k)v;(k, p), which is just the

condition (16).

(b) Polytopic uncertainty. Using (18b) follows that
Y e DT (k) S OEOT (1)
==l Bi(l)(p)+

- > 0.
em,-lol( ) m,/)z (P)

N
APy +n Y BV (p)

j=1,j#i

By (18d), it derives that —"— p(p) > eT p( 3

P xié’”( ), eWENT (k)
——— + B (p)—
m, pi(p) mipl(l’)

Together with & (k, p) < 0, (7), and (19) gives

N
0=<A () +n Y BY(p)
J=1.j#i
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N Zm/ (z)%-(l)T( ) Zm, ([)E(Z)T (k)
1%m i m;
<A )+ ) B}”(p)’+ + B,-‘”(p)‘—
o el pi(p) el pi(p)
N
=A"(p+ Y BY(pFik, p)+ B (p)Fi(k, p). (25)
J=1,j#i

From Egs. (7) and (12), the polytopic uncertain system (5) can be rewritten as:

L N
stk+s+ 10 =Y 1(A%m + Y BOGF p) + B (F k. p) )ik + slk), (26)
=1 J=1j#

where ZZL:I A = 1,4 = 0. From (25), the system (26) is positive by Lemma 1.
By (18c) and (19), it holds that

S
F' (k. p)B" (p) Y mpgvitk, ) + F (k. p)oi(p) 27)
g=1
Yo E (k. p)el)T S
= e, Pi(p) B (p) ; pgvi (k. q) + 0i(p))
E:(k. p)el, BT (p) Yoo_, mpqvik, @) + 0i(p))
B el pi(p)
= gi(ks D). (27)

From (7) and (27),

S
(AF(P) + Bi(p)F:k, p)| > mpqvitk, @) — vilk, p) + 6*(p) + FT (k. p)oi(p)
g=1

L
Z (A‘”*(p)+3<”(p)F(k ) Zn,,qv,(k q) —vi(k, p) + ¢*(p) + F' (k, p)@(p))
g=1

=

M“ [

M (a7 (p) anqv,-(k, 9 + &k p) = vitk, p) + 5" (). (28)
1 q=1

By Egs. (18a) and (28), it can be derived that the condition (22) holds, that is, the condition
(14) is satisfied.

Finally, the upper bound of the performance index in Eq. (10) can be achieved by Eq.
(16) and the corresponding proof is the same as that in the interval uncertain case. [

Remark 1. In (17), a matrix decomposition technique is employed for the design of DMPC
controller gain matrix F;(k, p). A decomposed form of F;(k, p) in (17) is given by:

1
Fi(k, p) = eMgMT k, +e(2) T k. p) + - v e EmIT k.
r) e%(ﬁf(pm(k)w,»(p))( s (kP den T ) e o p)
1

((s}”(k, 2.0,....0) + (0,2, p).0,...,0)"

mi m;

= o BT (k) + o (p)
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+(0,...,0,™ (k, p) )T),

m;

where 0 = (0,...,0)7 € %". Under the decomposed form, it is easy to transform the robust
stable condition (14) into (15a). Moreover, the positivity condition (15b) is obtained. It is
clear that Eq. (15a) and (15b) are solved in terms of linear programming. A similar method
is used in Eq. (19).

Remark 2. In [30], it was shown that there does not exist a nonnegative feedback controller
such that a discrete-time positive system is stable. Hence, the MPC controller in [30] was
required to be negative. This paper follows the method in [30]. It should be pointed out
that there may exist a controller with nonnegative and non-positive components such that the
corresponding system is stable. Thus, it would be interesting to remove the sign restriction
of the DMPC in Egs. (17) and (19) in future work.

Remark 3. For general systems (non-positive), a Lyapunov function is usually constructed
in a quadratic form: V (x(k)) = x7 (k)Px(k), where P is a positive definite matrix with com-
patible dimension. Such a quadratic form can guarantee the positive definite property of the
Lyapunov function. Stochastic Lyapunov functions with a quadratic form are widely used
for MJSs [9-13]. The state of positive systems is nonnegative. Therefore, a linear function:
V (x(k)) = xT (k)v can be chosen as the Lyapunov function of positive systems, where v > 0
with compatible dimension. Under the linear Lyapunov function, linear programming is nat-
urally employed as computation tool. A linear approach including linear Lyapunov functions
and linear programming has been employed for positive systems [4-8]. Consequently, linear
stochastic Lyapunov functions and linear programming have also been developed for PMJSs
[15-21]. In [39-43], the DMPC has been considered. In [41-43], linear matrix inequalities
were chosen as the computation method. For PMJSs, the number of linear matrix inequalities
conditions may increase twice since the positivity of the systems are required besides the sta-
bility. Consequently, the traditional DMPC framework is not very suitable for PMJSs. From
the Introduction, it is not hard to find that a linear approach is more effective for positive
systems than other approaches. Therefore, Theorem 1 proposes a linear Lyapunov function
associated with linear programming approach for the DMPC controller design of PMIJSs.

Remark 4. To guarantee the linearity of the conditions (15) and (18), the parameter A is
given. Two questions yield: (i) how to choose the parameter, and (ii) whether the parameter
will bring conservatism to Theorem 1. For the first question, a suggested algorithm is provided
later. A discussion on the second question is given as follows. For two positive real numbers
a and b, a fact is that there must exist a constant 72> 1 such that a < hb. This reveals that
the conditions (15d) and (18d) do not increase the restriction for the conditions (15) and
(18), respectively. Take (15b) and (18b) into account. If the inequality A + BK > 0 holds,
then there must exist a constant #> 1 such that A + 7BK’ > 0 holds, where A>0, B>0, and
K = nK’. Based on this point, the conditions (15b) and (18b) do not bring the conservatism
to the conditions (15) and (18), respectively.

To obtain the value of y;(k), a linear programming can be implemented:

min y;(k) subject to (15) and (16) (or, (18) and (16)). (29)
vi(k,p).&" (k,p).E; (k. p)

To choose the value of A and compute (29), a suggestive algorithm is introduced as follows:
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Algorithm 1

Step 1: Let he[l, fz], where 7 is a given constant. Set i; = 1 +a,-(fz — 1), where i =
1,2,...,M,M € N and o; is a random number in the interval [0,1].

Step 2: Substitute %;,i =1,2,..., M, into (15) (or, (18)). If the condition (15) (or, (18))
is feasible, denote the corresponding values of 7; as hy,i=1,2,..., My, where My<M and
go to Step 4. Otherwise, go to Step 3.

Step 3: Choose h € (7, fz/], where 7 is a given constant. Set #; = 1 + oi(i_’z/ — h), where
i=1,2,...,M',M €N and o, is a random number in the interval [0,1]. Repeat Step 2.

Step 4: Implement the optimization (29) for each %iy;,i = 1,2, ..., My and find the minimal
value of y;(k).

Theorem 2. If the optimization (29) is feasible at time instant k for the initial state x(k)
and initial mode ry, then the optimization (29) is also feasible at any time instant k' > k.
Moreover, the DMPC controller obtained from (29) guarantees the stability of the system
(5) with interval/polytopic uncertainties in the mean-square sense.

Proof. (a) Interval uncertainty. Assume that the optimization (29) is feasi-
ble at the sample time instant k. Denote the optimization solution as ®;(k) =
{yi*(k),E*(k,p),v,-(k,p),éi(’)(k, p),gi(k,p), h} and the control sequence as U;(k) =
{u;(k), ui(k + 11k), ..., u;(k + M — 11k)}, where M 1is the predictive step. By (16),
Vi(klk) < y*(k). At the (k+ 1)th sample time instant, construct a feasible solution as
Ok + 1) = (yik + 1) = y7 (k) Fi(k + 1, p) = F7 (k. p), vi(k, p). £ k. p).§,(k, p), 7} and
a control sequence as U;(k + 1) = {u;(k + 1|k), ..., u;(k+M — 1|k), 0}. First, ®;(k+ 1) is
a solution to (15). Then, the condition (14) holds, that is, V (k + 1|k + 1) < V (k|k). Thus,
V(k+ 11k +1) < y*(k) = yi(k + 1). This implies that the optimization (29) is feasible at
the sample time instant k¥ + 1. By a recursive induction, the feasibility of the optimization
(29) is reached.

From (15) and (20), we have Ek+s|k(Vi(k + s+ 1|k)) <Vitk+slk),Vs=1,2,.... That
is to say, Ei ik (V,-(k + s+ llk)) is non-increasing with time. As s— 0o, ]Ekmk(V,-(k + s+
1|k)) — 0. Since V;(k+ s+ 11k) > «; || x;i(k + s+ 1]k) ||;, then Ek+s|k( I xi(k 4+ s+ 11k) |l
lx(k), rk) — 0, where o; = n12in s vfj)(k, p) with vl.(j)(k, p) being the jth element of v;(k, p).

p=L12,..,
Jj=12,..n

By Definition 2, the system (5) is stochastically stable.
(b) Polytopic uncertainty. The proof of the polytopic uncertainty case is similar to (a)
and omitted. [

3.3. Handling constraints

In this section, a linear programming approach is presented to handle the constraints in

(8).

Theorem 3. (Handling constraints) (a) Interval uncertaintz. If there exist constants h> 1,
yi(k)>0, € >0 and R" vectors v;(k, p) > 0, éi(l) (k, p) <0, &;(k, p) <0 such that (15), (16),
and

vi(k, p) > €ey, (30a)

yi(k) < 8e, (30b)
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ney, (Bl (p) Zn,,qvl(k ) + 0i(p))es + Zs“)(k Pt ey, = 0, (30c)
q=1 =1
holdVp € 3,V(i, j) € {1,...,N} x{1,...,N},i # j, then the constraints in (8) are handled
under the control law (17).
(b) Polytopic uncertainty. If there exist constants h>1, y;(k)>0, €>0 and vectors
vitk, p) = 0 with v;(k, p) € R", pi(p)=0 with p;(p) € R™, sl.(') (k, p) € W, E;(k, p) < O with
&, (k, p) € W" such that (18), (16), and

vi(k, p) = €ep,
yi(k) < de, 31)
nel pi(pen + 8 31 &1 (k, p)e®T ey, = 0,

hold vVl e {l,...,L},Ype 3,V(,j)e{l,...,N} x{l,...,N},i # j, then the constraints in
(8) are handled under the control law (19).

Proof. (a) Interval uncertainty. From Theorem 1, the condition (14) holds. Then xl-T k+s+
1k)v;(k, p) < xiT(k + slk)vitk,p) <... < xiT(k|k)vi(k, p). Together with (16) gives xiT(k +
s+ llk)vi(k, p) < y;(k). By (30a) and (30b), it derives that

exT(k + s+ ke, < xT (k + s+ 1|k)v; (k, p) < yi(k) < e, (32)

— 1

which verifies the validity of the constraint (8a).
Using (30c) gives

S &k, plel)”
o B (P) Yoy Tpville ) + 01 (p)

Noting the control law in (17), it follows that —8FT (k, p)em 5 ne,. Thus, —&x! (k +
s|k)FT(k plem, < nxT(k+s|k)en, that is, —uT(k+s|k)em, <1 5 xI' (k + slk)e,. By (32),

—uT (k+slk)en, = lutk +slk)|l1 < 5 X; xI' (k + s|k)e, < n, which handles the constraint (8b).
(b) Polytopic uncertainty. The proof is similar to that in (a) and omitted. I

ne, + 6

m;

To obtain the value of y;(k), a linear programming can be implemented:

min y;(k) subject to (15), (16), and (30) (or, (18), (16), and (31)). (33)
vi(k,p).&" (k.p).E; (k,p).e
The conditions in Theorems 1 and 3 are all linear programming. Thus, the optimization
(29) and (33) can be solved in terms of linear programming.

3.4. Robust DMPC algorithm

In this section, a cone as the invariant set is established for the systems. Then, a linear
programming based DMPC algorithm is proposed.

Lemma 4. (Invariant set) Define a cone ©; = {xilxiT (kyvik, p) < yi(k)}, Vx(k) = 0, yp(k) >
0,Vpefl,...,S}). Then, ©; is an invariant set of the system (5).

By (15) and (18), the condition (14) holds. Together with (16), it is clear that ®; is
an invariant set of the system (5). From the proof of Theorem 2, it follows that ©;
{x O E{llx k) lI11x0, ro} — O}
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Theorem 4. If the optimization (33) is feasible at time instant k for the initial state x(k) and
initial mode 1y, then the optimization (33) is also feasible at any time instant t > k. Moreover,
the DMPC controller obtained from (33) guarantees the robustly stochastic stability of the
system (5) with interval/polytopic uncertainties in the mean-square sense.

The proof of Theorem 4 is similar to that in Theorem 2 and omitted. To solving the
optimization (33), an algorithm is given as follows:

Algorithm 2

Step 1: Set F;(0, p) = 0 for k = 0. Choose a value 7 such that (33) is feasible using linear
search method. Assume that the feasible solutions are Fi(o) (0, p). Set F;(0, p) = Fi(o) 0, p) at
time instant k = 0.

Step 2: Fix the value & in Step 1 and implement the linear programming (33) at the time
instant s = 1 to obtain F;(1, p).

Step 3: Implement the linear programming (33) at the time instant s = n to obtain F;(n,
p). If (33) is feasible, check the convergence condition ||F;(n, p) — F;(n — 1, p)|l1 < ¢&;, Vi €
{1,...,N}, where ¢; >0 is a prescribed error. If (33) is infeasible, set F;(n, p) = F;(n — 1, p).

Step 4: Apply the control input u;(k 4+ nlk) = F;(k, p)x(k 4+ n|k) to the corresponding sub-
system and implement the linear programming (33) at the time instant k =k +n-+ 1 by
repeating Step 3.

4. Extensions to general systems

In Section 3, the DMPC of PMJSs is considered. It has also been stated that the linear
approach has some advantages with respect to the quadratic approach. This section attempts
to develop the approach in Section 3 for general systems. In Section 3, the interval and
polytopic uncertainties in Eqs. (2) and (3) require the nonnegative property of the system
matrices. Here, the nonnegative restriction is removed, that is, the system matrices in Eqs.
(2) and (3) do not contain any sign restriction. Assume that the considered systems can be
positively stabilized, which means that there exists a control law such that the considered
systems are positive and stable.

We modify the optimization problem (10) as

min max Ji(k) subject to (5) and (8), (34)
ui(k+slk)  [Ai(re) Bi(re)]1€€2 (OT,$25)
i=1,2,.,N,s20  i=1,2,...,N,rs 0 €3

with the performance index function:

Ji(k) = Ek[ > (x,.T (k+slk)s (k+slk) +u™" (k + slk)o;t (k + slk) +u; " (k + slk)o; (k + slk)
s=0

N
D0 T skey K+ sl + Tk + sl (k+ s1K) ) . (35)
J=1j#
where x;(k + slk) and w;(k + slk) = u; (k + s|k) + u; (k + s|k) with u (k+ s|k) = 0 and
u; (k+slk) < 0 are the state and input predicted at time instant k, ¢ (k + s|k) > 0, Q;r (k +
slk) = 0, 07 (k+slk) <0, Q;'_(k +slk) > 0, 0; (k +slk) <0, and u}(-) = u}L*(~) +u;* () is
the solution obtained from a previous iteration and kept fixed in the current iteration.

Remark 5. Considering the property of positive systems, a negative DMPC controller is
designed in Section 3, that is, u;(k + s|k) < 0. For general systems, the negative DMPC
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controller is rigorous. Therefore, the sign restriction of the controller is removed in this
section. Consequently, the optimization (34) is introduced. For the DMPC of general systems,
a quadratic performance index is usually used [41-43]. Here, a positive system approach is
employed to deal with the DMPC problem of MJSs. Following the approach in Section 3, a
linear performance index (35) is given.

The linear robust stability condition (14) is changed as:
Vitk + s+ 1lk) — Vi(k + s]k)
< —<xiT (k + slk)g (k + slk) + u ™ (k + slk)o;" (k + slk) +u; " (k + slk)o; (k + s|k)

N
+ 0 (T K+ sl K+ sl + T (K + siie] (k + s1K)) ). (36)
j=1j#i

4.1. Interval uncertainty

The first section first considers the interval uncertainty case. From Section 3, it can
be found that the sign of the system matrices B;(p) is key to the DMPC design. The
matrices B;(p) is divided into B;(p) = B; (p) + B (p), where B; (p) <0 and B/ (p) =
0 consisting of all non-positive and nonnegative elements of B;(p), respectively. Then,
denote B,(p) = B; (p) +B; (p) and Bi(p) =B, (p) + B (p), where B (p) <0.B}(p) =
0,B; (p) <0, E? (p) = 0 and B; (p), Bf (p) and B; (p),Ei+ (p) are the corresponding lower
and upper bounds, respectively. For the cases B; (p) =0 and Bi+(p) =0, the results are
trivial and similar to Section 3. Therefore, only the cases B; (p) # 0 and B} (p) # 0 are con-
sidered. Accordingly, the controller gain is given as: F;(k, p) = F,” (k, p) + F.* (k, p), where
F(k,p) <0 and F*(k, p) = 0.

Theorem 5 (Controller design). If there exist constants hy > 1, by > 1, y (k) > 0 and R" vectors
vitk, p) > 0, "% (k, p) = 0, & (k, p) > 0, "7 (k, p) < 0, & (k, p) < O such that

N
AT ()Y wpqvith, ) + Mgt (k. p) + & (k. p) = vilk, p) + *(p) <0, (37a)

q=1

N N mj
1 l
A(pey, (BT (P) Y oyl ) + 07 () + 2= D B (p) ) eng" (k. p)
=1

g=1 j=1.j#i
N mj N mj
— 1 1 —+ 7 1)—
+h Y Bi(p)Y e T p)+ Y B (p)Y elE" T (k. p)
j=1,j#i =1 j=1,j#i =1

N mj mj

1 n 1 1)— ] 1

tar 2 B0 eng" ko) + B Y eng )
Jj=1,j#i =1 =1

mj
+Bi(p) Y _en e (k, p) = 0, (37b)

=1

el (B (p) Y5 mpqvitk. @) + 07 (p)) < Tuely (BT (p) Y5, mpgvikoq) + 05 (). (370)
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el (B] (p) X5_y mpgvitk. @) + 07 (p) < el (BY (p) Y5 mpvik. @) + 07 (p)),  (37d)
Bl (p) Y3 wpqvitk, @) + 0] (p) > 0, (37e)

VT (k, p) < £k, p), EVT(k, p) < E7(k, p), 1=1,2,...,m;, (376)
and (16) hold Vp € $,V(i, j) € {1,...,N} x{1,...,N},i # j, then under the control law
ui(k + slk) = Fi(k, p)x;(k + s|k) = (F;* (k, p) + F,~ (k, p))xi(k + s|k) with
S eE T (k, p)
el (BI (p) Yoo mpqvitk. @) + 07 ()
Yo eWe" ! (k, p)
el (BI (p) Yoo mpqvitk. @) + 07 ()

the interval uncertain system (5) is positive and satisfies the condition (36), or there exist
constants 1>h; >0, y;(k)>0 and R" vectors v;(k, p) = 0, éi(’H (k, p) >0, E;r(k,p) > 0,
£07(k, p) <0, & (k, p) < 0 such that

F(k,p) =

N
A ()Y mpgvilk. @) + &' (k. p) + & (k. p) — vi(k. p) + 6" (p) <0,
g=1

S N mj
Ai(p)ef, Bl ()Y mpgvitk, @) + 07 (P) + T Y BF(p) Y _ew& T (k, p)

g=1 j=1,j#i =1
1 N mj 1 N mj
_ - =+
tar 2 B ens”  kep o D B g kep)
J=Lj# =1 J=1j# =1

mj

N mj
+h Y Bi(p) Y e (k. p) + Bi(p) Y eWEM (k. p)
=1

j=Lj# =1

+Bi(p) Yy _eW e (k, p) = 0,

=1

S S
en (Bl () Y mpgvik, @) + 07 (p)) < Pue, (B] (p) Y 7pqvi (k. q) + 0] (P)),
g=1 g=1

S
B (0) Y mpgvitk. ) + 07 (p) < 0,
g=1

EVT(k,p) 2 &7k p). EV Tk p) 2 & (kop), 1= 1,2, m, (39)
and (16) hold Vp € $,V(, j) € {1,...,N} x{l,...,N},i # j, then under the control law
ui(k + slk) = Fi(k, p)x;(k + s|k) = (F;* (k, p) + F,~ (k, p))xi(k 4 s|k) with
p er(rlt?éi(l)iT(k’ p)

FT(k,p) = :
el (BI (p) Yooy mpgvi(k. @) + 07 (p))
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2 em&" T &, p)
el (B (p) Yp_y pgvik, @) + 07 (p))

the interval uncertain system (5) is positive and satisfies the condition (36), where

F(k, p) = (40)

N
A (p)=Aip)+ Y B;(p)F;™ (k. p) + B, (p)F;* (k. p)).

J=1j#
Proof. Consider the validity of Theorem 5 under the condition (37). The proof of the condition
(38) is similar and omitted. By (37e), it follows that e,fq’, (QiT (p) Zzzl pevik, @) +0; (p)) >
0. By (37c), it is easy to obtain

I3 - 1
el (Bl (p) Yg_y pgvik, @) + 07 (p)) — €l (BT (p) Yoy 7pgvi(k, @) + 05 (P))

1
> 41

T el (B (p) Yoy mpgvith, @) + 07 (p))

Together with &"* (k, p) > 0,&"" (k, p) < 0, and (6) gives

N
Ai(p)+ Y Bi(p)Fi(k, p) + Bi(p)Fi(k, p)
j=1j#
N
AP+ Y Bk p) + F (k) + Bip) (B (&, p) + F (. p)
J=L
N _— —_—
= A+ Y (B WF & p)+Bi(0F] (k. p)) + (BADE k. p) + Bk, p)).
J=1j#i
“2)

By Egs. (38) and (41),
Yo eWE Ot (k, p)
hel, (B (p) Yooy Tpgvi (k. q) + 07 (p))
Y, e (k, p)
el (B (p) Yoo_y pgvik. @) + 07 (p))
Y eWEN T (k, p)
el (BY (p) Yoo_ mpqvitk. @) + 07 (P))
S ems ™ k, p)
hel, (B (p) Yg_y Tpgvitk. @) + 07 (P))
Substituting (43) into (42) yields that

B;(p)F;" (k, p) = B} (p)

+B; (p)

B;(p)F; (k. p) = B} (p)

(43)

+B; (p)

N

Ai(p)+ Y Bi(p)Fi(k, p) + Bi(p)Fi(k, p)
J=1.j#
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1
>
T el (BN (p) Y0 mpgvitk. @) + 0i(p))

S
(en, B Z 7pqvi(k. @) + 0/ (P)A;(p)

mj

Z ()Y e (k. p) + Iy Z By (p)Ze@s(””(k P)

] 1 j#i =1 j=1,j#i =1
Z B; (p)Ze“)s(” Tk, p>+— Z B, (p)Ze@s“) "k, p)
Jj= 1]7'51 j 1,j#i =1
mj
+B,(p) Z e e (k, p) +Bi(p) Y el (&, p)). (44)
=1

From Eq. (37b), it is clear that A;(p) + Z] 1 ]#B(p)Fj(k, p) + Bi(p)F;(k, p) = 0, which
implies that the pth mode of the interval uncertain system (5) is positive by Lemma 1. Thus,
the interval uncertain system (5) is positive by Lemma 2.

Next, consider the validity of the condition (36). Similar to (14), the condition (36) is
equivalent to:

S
1k + s (A7 () + BUpF(k, )Y mpqvih @) = vick, p)
g=1

+6" () + FT (k, pof () + 7 (ks pler (1) <0,

where *(p) = 5 (p) + X1_1 ;. (F;™" (k, poj (p) + F; " (k, p)oj (p)). By (37d) and (38),

F (k, p)B] (p) i Tpgvitk, @) + FT1 (k, p)oit (p) + F " (k, p)o; (p)
q=1
- el (B ( p?;q sl(l;:];(i)c)eq(;i o (p))( L(p) ;nmm k,q) + oi (p))
(1) !

o B (p)ZZ E] n:; (Z)eq())i pr B/ (p);npqvi(k, 9 +o; (p))
= el (B! (p)ZZ gl(lz)r:]:i(ieq(l)):- o (p))(EiT w) ;S;n"qvi(k’ 9 +el ()

el (BT (P?Zqi(l;pii, (l]’()eq(;)i o; () & ») g mpvilh @) + 07 ()
< W& (k, p) + & (k. p). (45)

From (6) and (45),

S
(AF(p) + Bi(p)F:(k, p)" > mpqvitk, @) — vi(k., p)
g=1
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T -T —
+57 () +F (k plof (p) + F ' (k, po; (p)

N
<A (p) > wpgvitk, q) + &t (k, p) + & (k, p) —vik, p) + S*(p). (46)
g=1

Combining the fact xl-T(k+s|k) >0, (37a), and (46) concludes that the condition
(36) holds. [

Remark 6. In Theorem 1, the open-loop interval uncertain system (5) is assumed to be
positive. The condition (15b) is presented to guarantee the positivity of the corresponding
closed-loop system. In Theorem 5, a positive system approach is used for the DMPC of
general systems (non-positive open-loop systems). To guarantee the positivity of the system
(5), the condition (37b) is introduced. Noting the controller gain matrices in (17) and (38), the
former is required to be negative whereas the latter is not. Assume that Theorem 5 employs
a similar controller to (17), then the corresponding positivity condition has a similar form to
(15b). On the other hand, the DMPC design approach in Theorem 5 can be developed for
Theorem 1 and remove the sign restriction of the DMPC controller gain matrix in Theorem
1.

Theorem 6 (Handling constraints). If there exist constants hy > 1, hp > 1, yi(k)>0, € >0 and
R vectors vi(k, p) = 0, £ (k, p) = 0, & (k, p) = 0, £ (k, p) <0, & (k, p) <0 such
that (37), (16), and

vi(k, p) = €ey, (47a)

yi(k) < de, (47b)

m; m; S
8 ED (ky prel) em, — 8 Y & (k. pel) em, — neh (BT (p) Y wpqvitk, q)

=1 1=1 g=1

+o; (p)en 20, (47¢c)

holdVp € 3,V(i, j) € {1,...,N} x {1,...,N},i # j, then the constraints in (8) are handled
under the control law (38), or there exist constants 1>h; >0, y;(k)>0, € >0 and vectors
vi(k, p) =0, % (k, p) = 0, £ (k, p) > 0, £V (k, p) < 0, & (k, p) < O such that (39), (16),
and

Vi(k’ p) = €én,
vi(k) < de,
S Z Ei(l)—(k’ p)el(é?Tgmp ) Z &'i(lH (k, P)E,(,I,?Tem,,
1=1 =1
s
— et (BT () 3" ik, @) + 0] (P))en = 0, @)
gq=1

holdVp e 3,VY(, j) e {l,...,N} x{1,...,N},i # j, then the constraints in Eq. (8) are han-
dled under the control law (40).



9588 J. Zhang, X. Deng and L. Zhang et al./Journal of the Franklin Institute 357 (2020) 9568-9598
Proof. From Eqs. (47¢) and (38), 8F;*" (k, p)ew, — 8F, " (k, p)em, — ne, < 0. Thus, sui" (k +
slk)en, — Su; " (k + slk)en, < nx” (k + slk)e,, and consequently,

ik + 1) < llu (k4 skl + lu; (k4 sl = w" (k + slk)ew, — u; " (k + slk)en, < 7.
The proof of the second case is similar to the first case and is omitted. [J

Theorems 5—6 have developed the DMPC design approach of interval positive systems to
general systems. The feasibility and robustly stochastic stability of the systems can be given
using similar methods in Theorems 3—4Theorems 3 and 4.

4.2. Polytopic uncertainty

This section further develops the approach in Section 3 for the polytopic case. Similar
to Section 4.1, the sign restriction of the system matrices is removed. Denote Bi(l)(p) =

B (p) + BV (p), where B~ (p) < 0 and B (p) = 0.

Theorem 7 (Controller design). If there exist constants hy > 1, h, > 1, y (k) >0 and vectors
vitk, p) = 0, &% (k,p) = 0, & (k. p) = 0, &7 (k,p) <0, & (k. p) <0, pi(p) = O such
that

S
AT () Y mpgvith, @) + Mg (k, p) + & (k, p) — vitk, p) + ¢*(p) < 0, (49a)
q=1

mj

N N mj
1 l : 1 1)—
AE”(p)e,i,.p,-<p>+7,1—1 ST BT Y eWe T ko py+in Y BUT(p) Y eWe" T (k. p)

J=Lj#i =1 j=lj#i =1
N m; N m;
+h Yy BT ()Y e o py+ i Y BT (p)Y eE T (k, p)
=LA = j=1.ji =1
+Bi(])(P) Ze,(,i?fi(lHT (k, p) + Bfl)(p) Ze,(,;?éi(')fT(k, p) =0, (49b)
=1 1=1
ey, Pi(p) < Tuey, pi(p). (490)
B E, (k ] / 49d
TP gt Tpgvitk. @) + 07 (p) - i), (49d)
BT (p) Yoo mpgvitk, @) + 0 (p) < hapi(p), (49€)
VT (k, p) < EF(k, p), £k, p) < E7(k, p), 1=1,2,...,m, (49f)

and (16) hold Vpe S, ¥l e {1,...,L},V(,j)e{l,...,N} x{1,...,N},i # j, then under
the control law u;(k + s|k) = F;(k, p)x;(k + s|k) = (F* (k, p) + F;~ (k, p))xi(k + s|k) with

S eWED (k, p) S eWeD T (k. p)

Fr(k, p) = , F-(k,p) =
P el 0i(p) b el pi(p)

(50)
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the polytopic system (5) is positive and satisfies the condition (36), or there exist constants
1> 1y >0, yi(k)>0 and vectors vi(k, p) = 0, £ (k. p) = 0, & (k. p) = 0, £~ (k. p) <0,
& (k,p) <0, pi(p) <0 such that

S
AT ()Y wpgvith, @) + & (k, p) + & (k, p) — vik, p) + <™ (p) < 0,
g=1

AL (P, pi(p) + Ty Z B””(p)Ze“)s(” "k, p)

Jj=Lj#i
Z B(’”(p)Ze(”s(””(k p)
] 1,j#i 1=1
- el - el
+or 2 BT eng" ke p o > B (0 ) g k)
j=1,j#i =1 j=1,j#i =1

m; mj
+B(p) Y& k. p) + B () Y e (k. p) <0,
=1 =1

erpi(p) < Tuel, pi(p),

S
BT (p) Y mpgvitk, @) + 0f (p) < pi(p),
q=1

50k p) <&k p) 5T (Kkop) <& (Kp) 1= 120y, Gb

and (16) hold Vpe S, Vl e {1,...,L},V(,j) e {l,...,N} x{1,...,N},i # j, then under
the control law u;(k + s|k) = F;(k, p)x;(k + s|k) = (Fi+(k, p) + F (k, p))xi(k + s|k) with

S ewg kp) S ews " (k. p)
Rfkop) = ==5 oy ep= o pi(p) 62

the polytopic system (5) is positive and satisfies the condition (36), where Agl)* (p) = Ai(l) (p)+
YN BV (D)F (k. p).

Proof. Consider the proof of the condition (49). By (49¢), it follows that ——— !

(p) = em 0j(p) —
Together with (7) and (50) gives

he;[-ﬂi(ﬂ).
N
AV(p)+ > BY(p)Fik, p)+ B (p)Fi(k, p)
j=1j#i
> <”<p)+ B (p) ) el (k. p)
B e,f,l.pi(p)< Z Z

J=Lj#

N m;
D BT Y e (k. p)

J=Lg# =1
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Z B~ (p)Ze“)s“)”(k p)+ Ry Z B~ (p)Ze“)s“) "k, p)

Jj= 1]#1 Jj=1,j#i

+B" (p) Z e k. p) + B (p) Z e (k. p)).

By (49b), A" (p) + X1, i BY (0)F; (k. p) + B{" (p)Fi (k. p) > 0. Thus, the system (26) is
positive by Lemma 1.
Next, the validity of the condition (36) is given. By (49d) and (49e),

N

Fl Gk, p)B] () Y wpgvih, @) + F7 (k, pyof (p) + F (k. po; (p)
g=1

S
A (F,-*T k. p) BT ()Y mpgvith. q) + 0] (p))
1 q=1

I
Mh

l

N
FET U p) (BT () Y i) + 0 (1))

g=1

L m; s (1)+ !
Zl: gi (k’ p) r(n,)
=2 (T B (”T(p)anv,(k 9+ 0 (p)

=1 q=1

m; ()= eOT
26 (ko pey,
d p(p)p — (8B <”T(p)§ Tpvitk, 9) + 0 ()

g=1

L
= Y w(mag ko )+ ).
=1

Thus,

S
(AX(p) + BiFik. )" ik, q) — vi(k. p)

g=1
+¢*(p) + T (k, p)o; (p) + F~" (k, p)o; (p)

S
(AP ) + BO (0 Fi ke p)) Y mpgvitk, @) = vik, p)
g=1

S*(p) + FT &k, plof () + F7 (k. oy ()

|
B

N
Il
-

N
M (AT (0) Y mpgvi, @) + Mot (ks p) + 87 (ke p) =ik, p) + 57 ()).
1 q=1

M~

=
!

By Eq. (49a), it follows that the condition (36) holds. [J

Theorem 8 (Handling constraints). If there exist constants hy > 1, hy > 1, yi(k) >0, € >0 and
vectors vi(k, p) = 0, % (k, p) = 0, &' (k, p) = 0, £ (k, p) < 0, & (k, p) < 0, p;(p) > O
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such that Egs. (49), (16), and

vi(k, p) > €e,,
yi(k) < 8e, (53)
Y ED (k, preT ey, — 83 £V (k, p)eT ey, — nel, pi(plen < 0,

holdVp e 8,VY(@, j)e{l,...,N} x {1,...,N},i # j, then the constraints in Eq. (8) are han-
dled under the control law (50), or there exist constants 1>h; >0, y;(k)>0, € >0 and
vectors vi(k, p) > 0, " (k, p) = 0, £"(k, p) = 0, "7 (k, p) <0, & (k, p) <0, pi(p) < O
such that (51), (16), and

vi(k, p) > €e,,
yi(k) < e, (54)
Y £ (k, peT e, — 83 £V (k, p)eT ey, — nel pi(ples > 0,

holdVp € 3,V(i, j) € {1,...,N} x {1,...,N},i # j, then the constraints in (8) are handled
under the control law (52).

Replacing the term 1_9iT (p) Z;zl pevi(k, @) + 0; (p) in Theorem 6 by pi(p), the proof of
Theorem 8 can be given using a similar method to that in Theorem 6.

Remark 7. In [41], the DMPC of MIJSs was investigated based on quadratic Lyapunov func-
tions and linear matrix inequalities. The DMPC of MJSs is proposed in this section using
a positive system approach. Different from the DMPC in [41], a linear Lyapunov function
associated with linear programming is used in Theorems 5-8. The main advantage of the
DMPC in Theorems 5-8 is that a linear programming based DMPC algorithm is employed.
As we all know, linear matrix inequalities based predictive algorithm will lead to a heavy
computation burden. Especially, for large-scale computation, linear matrix inequalities have
a low capacity. Linear programming overcomes the drawbacks of linear matrix inequalities.
On one hand, the linear programming based conditions have a simple form. On the other
hand, linear programming is powerful for dealing with large-scale computation. These points
improve the traditional DMPC approach.

Remark 8. The obtained results in Theorems 5-8 imply that the sign of the states will be
kept invariant under the designed DMPC controller. That is to say, the corresponding state
component is nonnegative (non-positive) if some component of initial conditions is nonneg-
ative (non-positive). Thus, the states are easy to be caught by the initial condition. It should
also be pointed out that the extensions in this section have a prerequisite that the considered
systems can be positively stabilized. However, not all systems satisfy the prerequisite. Up to
now, there is no method to judge which class of systems can be positively stabilized. This
brings conservatism to the obtained results. In practice, one may decide whether the results
are available by checking the validity of the conditions in theorems.

This paper has proposed the DMPC design for PMIJSs and then developed the obtained
approach for MJSs. All considered systems are linear. As we all know, nonlinear systems have
advantages in modeling practical dynamic processes [44,45] with respect to linear systems.
There have also been some results on nonlinear PMJSs [20,21], the nonlinear MPC [28.,46],
and the MPC of nonlinear MJSs [27]. For positive systems, few efforts are devoted to the
topics mentioned above. There are three interesting issues in future work: (i) how to developed
the DMPC framework proposed in this paper for nonlinear PMJSs and (ii) how to construct
a nonlinear MPC (DMPC) framework for nonlinear PMJSs.
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5. Illustrative example

Susceptible-exposed-infected-removed (SEIR) is one of the most commonly used models
in epidemics [47]. In such a model, there are four classes of individuals: (i) Susceptible
individuals (named S) who have a large possibility to contract the disease; (ii) Asymptomatic
but infectious individuals, also called exposed individuals (named E) who may transmit the
disease to S; (iii) Symptomatic but infectious individuals (named /) who may transmit the
disease to §; and (iii) Recovered individuals (named R) who are permanently immune, the
recovery, or death. Such a simple model represents well a generic behavior of epidemics, and
a related advantage consists in a small number of parameters to identify. In [48], a modified
SEIR discrete-time model was proposed to model the epidemics trend of COVID-19 in China:

Stk + 1) = S(k) — pLLOTOEB g (), (55a)
E(k+1) = (1 — 0)E (k) + b2LOHTOEO gy (55b)
I+1) = (1= )Ik) +oE k), (55¢)
R(k +1) = R(k) + xI(k), (55d)

where k € N is the time counted in days, N denotes the total population, the parameter 0 <
X < +oo represents the mortality and recovery rates, the parameter 0 < b < 400 corresponds
to the infection rate of the virus transmission from infectious to susceptibilities, 0 < o < 400
is the incubation rate by which the exposed develop symptoms, 0 < p. < 400 corresponds to
the number of contacts for the infectious /, and p. < r(k) < +o0 is the number of contacts
per person per day for the exposed population E.

It is not hard to know that the system (55) is positive since the number of four classes
individuals is nonnegative. For the corresponding analysis and synthesis, it is reasonable to
employ a positive system approach. In [9], a positive system approach has been used to model
HIV mitigating virus escape process. It is worthy noting that HIV is essentially a epidemic.
This further reveals that positive systems play a key role in modeling epidemics. Note the
fact that R(k) is easy to be obtained when I(k) is known. Therefore, the SEIR model (55)
is modified as SEI model (55a)—(55c). It is also necessary to point out that the exposed
and infectious population will affect the susceptible population, the symptomatic persons will
affect the asymptomatic persons, and the susceptible persons may become the symptomatic
persons. In addition, the inequality 0 < bw < 1 holds. Based on these points, the
SEIR model (55) is rewritten as:

Stk +1) =a;Sk) + anE k) + azlk),
E(k+1) = ayS(k) + anE (k) + axl(k), (56)
Ik +1) = a3 S(k) + ankE (k) + aszl (k),

L (k)+r(k)E (k)
where aj; = 1 — bE==2222 gy = 1 — 0, a3 = 0,a33 = 1 — x and an, a3, az1, a4, as

are unknown nonnegative weighted coefficients. The system (56) is a predicted model to
estimate the population of four classes of individuals. Indeed, a more important issue is
how to contain the deterioration of epidemic. Therefore, it is necessary to introduce some
effective control strategies for (56). Quarantine is one of available strategies in the absence of
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20 30 40 50 60 100

Fig. 1. The simulations of the state xj(k) and its upper and lower bounds.

specific drugs and vaccines. From the viewpoint of control theory, quarantine is to move the
people from the infection zone to a safe zone or restrict their behaviors, that is, the control
input u(k)=<0. In different zones, several SEI models can be established. Meanwhile, different
individuals in different zones will correlate with each other. A Markov jump process is more
suitable for modeling the dynamics of epidemics. In existing literature, such as [47] and
[48], some identification methods were used to obtain the values of parameters b, p., r(k),
o, x. Considering that the measured data and parameters contain numerous uncertainties, it
is difficult to make a reasonable prediction based on the SEIR model with fixed values of
parameters. Thus, an interval approach has already been applied to SEIR models in [49] and
[50].

By these analysis above, the system (1) with interval uncertainty is employed to re-construct
SEIR for epidemics, where

034 036 035\ 0.45 037 0.36 0.01 0.01
A(l)=1035 033 036],A1)=]036 044 0.37),B(1)=10.02 0.02 |,
032 035 0.34 042 036 0.35 0.02 0.02
0.05 0.05
B(1)=(0.04 0.04 |,
0.03 0.03
and
0.35 0.34 0.36 0.36 035 0.37 0.02 0.02
A2)=1036 033 035],A2)={037 034 036],B2)=1001 001 |,
035 032 0.34 0.36 0.33 0.35 0.03 0.03
0.03 0.03
B2)=10.03 0.03
0.06 0.06

Give the initial condition x(k) = (2 x 10° 5 x 10° 4 x 10%)7. Using Algorithm 1 gives h =
2.11. Then, implement Algorithm 2 via 40 iterations. Here, the variables in the first predicted
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10 20 30 40 50 60 70 80 920 100

Fig. 2. The simulations of the state x»(k) and its upper and lower bounds.

10

102

- )]
......... z3(k)

10"

10 20 30 40 50 60 70 80 920 100

Fig. 3. The simulations of the state x3(k) and its upper and lower bounds.

step are obtained:

v1(0, 1) =

%) (0, 2) =

£10,1) =

0.1498 0.1497 0.1369

0.1400 |, v1(0,2) = | 0.1399 |, v»(0, 1) = [ 0.1359 |,
0.1330 0.1329 0.1327

0.1368

0.1358 |,

0.1326

—0.0124 —0.0123 —0.0131
—0.0205 |, £1(0,2) = [ —0.0204 |, &" 0, 1) = | —0.0128 |,

—0.0222 —0.0222 —0.0118
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0 10 20 30 40 50 60 70 80 90 100
Fig. 4. The simulations of the control input u(k).
2.5 T T T
\— Markov jump signal\
Py _ I L ]
15 |
17 e d  — e e bl bl Red e e b b b ed B B o e Bd e
0.5 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Fig. 5. One of Markov jump signals.
—0.0130
£1(0,2) = [ —0.0127
—0.0117
Then, the DMPC controller gain matrices are
—1.8056 —0.0130 —1.6381
F0,1)=|-298% |, F'(0,2) = | —-0.0127 |,EF(0,1) = | —1.6036 |,
—3.2535 —0.0117 —1.4810
—0.1982
F(0,2) = | —0.1982
—1.1749

Denote X(k) = (%1 (k) X»(k) X3(k))T and x(k) = (x, (k) x5 (k) x5 (k)T as the upper and lower
bounds of the state x(k), respectively. Figs. 1-3 show the simulations of the states and their
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lower and upper bounds, Fig. 4 is the control input, and Fig. 5 is the Markov jump signal.
From Figs. 1-3, it is clear that the infectious individuals are contained in a limited scope.
From Fig. 4, the quarantine population is much at the first 30 sample time instants (days)
and it is few after 60 days. In Fig. 4, the quarantine population at the beginning of spread of
epidemics is more than the sum of the susceptible, asymptomatic, and symptomatic infectious
individuals. In practice, this is unreasonable. Indeed, it means that all individuals are required
to implement the quarantine strategy if the quarantine population in Fig. 4 is more than the
sum of the susceptible, asymptomatic, and symptomatic infectious individuals.

Remark 9. The literature [47-50] was concerned with the modeling, the parameter identifica-
tion of models, and the state estimation. These literature can provide some available modeling
of SEIR and present some effective predict for the trend of epidemics. However, few strategies
are devoted to how to contain epidemics. It is fundamentally important to propose effective
approaches to suppress the spread of epidemics. In this section, a suggestive DMPC approach
is given to fill the mentioned gap. It should be pointed out that the parameters in the consid-
ered system are not from a real case in some zone. In practice, one can utilize the methods in
[47-50] to identify parameters by virtue of some real data. Then, the approach in this section
can be used to contain epidemics.

6. Conclusions and future work

This paper has presented a DMPC framework for PMJSs. Different from the DMPC of
MISs, the elements of the DMPC framework of PMJSs are all linear. Using matrix decom-
position techniques, the DMPC controller is designed in terms of linear programming to
guarantee the positivity and stochastic stability of the systems. The interval and polytopic
uncertainties are handled, respectively. Some corresponding algorithms are provided to check
the presented conditions.

The proposed DMPC framework can be further developed for the corresponding issues of
positive systems such as positive Takagi-Sugeno fuzzy systems, positive multi-agent systems,
and so on. It is also interesting to establish a DMPC framework on positive Markovian systems
with disturbances. In this paper, the DMPC control law of PMIJSs is required to be negative.
How to remove the sign restriction of the DMPC control law may be a significant topic in
future work.
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